

Decolorization

Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties

By:

Yousefi, SR (Yousefi, Seyede Raheleh) [1]; Alshamsi, HA (Alshamsi, Hassan Abbas) [2]; Amiri, O (Amiri, Omid) [3]; Salavati-Niasari, M (Salavati-Niasari, Masoud) [1] View Web of Science ResearcherID and ORCID (provided by Clarivate) JOURNAL OF MOLECULAR LIQUIDS Volume 337 **Article Number** 116405 DOI 10.1016/j.molliq.2021.116405 Published SEP 1 2021 Early Access MAY 2021 Indexed 2021-08-28

Document Type

Abstract

Keywords Contamination of surface water with dye chemical compounds and/or biological substances, even in small amounts, can affect the health of humans and other organisms. The photocatalytic oxidation process has been considered as a commercial technique to remove environmental pollutants. In the current study, we reported the synthesis of Co/Co3O4 nanocomposites investigated for their photocatalytic and antimicrobial activities. The affecting parameters (various surfactants and calcination) on the synthesis process were investigated. The synthesis of Co/Co3O4 nanocomposites was confirmed via methodical characterization such as SEM, FT-IR, XRD, VSM, EDX, CV and DRS investigations. Well diffusion assay and bacterial cell viability assay were executed against clinical pathogens to prepare the antibacterial activity of synthesized Co/Co3O4 nanocomposites. Also, the photocatalytic activity of nano-catalysts was concluded against the organic colors (acid blue 92 and acid red 151). Cobalt oxide nanoparticles (NPs) synthesized in the presence of SDBS as an anionic template showed the

Decolorization

highest decolorization of 93% over acid red 151 after 120 min of illumination. The results showed a minimum bacterial inhibitory concentration for bacteria P. aeruginosa, and B. subtilis is about 31.25 mu g/mL and 125 mu g/mL, respectively. The Co/Co3O4 nanocomposites exhibited vigorous antibacterial activity against gram-negative microorganisms mentioned like Pseudomonas aeruginosa. (C) 2021 Elsevier B.V. All rights reserved.

Author Keywords

Antibacterial activityPhotocatalytic activityDye degradationMagnetic nanocomposites Keywords Plus HYDROTHERMAL SYNTHESISNANOPARTICLESNANOCRYSTALSALCOHOL