

1-Cancer statistics, 2025

By Siegel, RL (Siegel, Rebecca L.) [1] ; Kratzer, TB (Kratzer, Tyler B.) [1] ; Giaquinto, AN (Giaquinto, Angela N.) [1] ; Sung, H (Sung, Hyuna) [1] ; Jemal, A (Jemal, Ahmedin) [2] (provided by Clarivate) Source CA-A CANCER JOURNAL FOR CLINICIANS Volume 75 Issue 1 Page 10-45 DOI 10.3322/caac.21871 Published JAN 2025 Early Access JAN 2025 Indexed 2025-01-20 Document Type Article

Abstract

Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence and outcomes using incidence data collected by central cancer registries (through 2021) and mortality data collected by the National Center for Health Statistics (through 2022). In 2025, 2,041,910 new cancer cases and 618,120 cancer deaths are projected to occur in the United States. The cancer mortality rate continued to decline through 2022, averting nearly 4.5 million deaths since 1991 because of smoking reductions, earlier detection for some cancers, and improved treatment. Yet alarming disparities persist; Native American people bear the highest cancer mortality, including rates that are two to three times those in White people for kidney, liver, stomach, and cervical cancers. Similarly, Black people have two-fold higher mortality than White people for prostate, stomach, and uterine corpus cancers. Overall cancer incidence has generally declined in men but has risen in women, narrowing the male-to-female rate ratio (RR) from a peak of 1.6 (95% confidence interval, 1.57-1.61) in 1992 to 1.1 (95% confidence interval, 1.12-1.12) in 2021. However, rates in women aged 50-64 years have already surpassed those in men (832.5 vs. 830.6 per 100,000), and younger women (younger than 50 years) have an 82% higher incidence rate than their male counterparts (141.1 vs. 77.4 per 100,000), up from 51% in 2002. Notably, lung cancer incidence in women surpassed that in men among people younger than 65 years in 2021 (15.7 vs. 15.4 per 100,000; RR, 0.98, $p = 0.03$). In summary, cancer mortality continues to decline, but future gains are threatened by rampant racial inequalities and a growing burden of disease in middle-aged and young adults, especially women. Continued progress will require investment in cancer prevention and access to equitable treatment, especially for Native American and Black individuals.

Keywords

Author Keywords

[cancer cases](#)[cancer statistics](#)[death rates](#)[incidence](#)[mortality](#)

Keywords Plus

[DIFFERENTIATED THYROID-CANCER](#)[PROSTATE-CANCER](#)[UNITED-STATES](#)[CHILDHOOD-CANCER](#)[LUNG-CANCER](#)[UPDATED METHODOLOGY](#)[HEALTH INEQUITIES](#)[MORTALITY](#)[US](#)[WOMEN](#)

2-Breast cancer statistics 2024

By Giaquinto, AN (Giaquinto, Angela N.) [1] ; Sung, H (Sung, Hyuna) [1] ; Newman, LA (Newman, Lisa A.) [2] ; Freedman, RA (Freedman, Rachel A.) [3] ; Smith, RA (Smith, Robert A.) [4] ; Star, J (Star, Jessica) [1] ; Jemal, A (Jemal, Ahmedin) [1] ; Siegel, RL (Siegel, Rebecca L.) [1] (provided by Clarivate)

Source CA-A CANCER JOURNAL FOR CLINICIANS Volume 74 Issue 6 Page 477-495 DOI 10.3322/caac.21863 Published NOV 2024 Early Access OCT 2024 Indexed 2024-10-05 Document Type Article

Abstract

This is the American Cancer Society's biennial update of statistics on breast cancer among women based on high-quality incidence and mortality data from the National Cancer Institute and the Centers for Disease Control and Prevention. Breast cancer incidence continued an upward trend, rising by 1% annually during 2012-2021, largely confined to localized-stage and hormone receptor-positive disease. A steeper increase in women younger than 50 years (1.4% annually) versus 50 years and older (0.7%) overall was only significant among White women. Asian American/Pacific Islander women had the fastest increase in both age groups (2.7% and 2.5% per year, respectively); consequently, young Asian American/Pacific Islander women had the second lowest rate in 2000 (57.4 per 100,000) but the highest rate in 2021 (86.3 per 100,000) alongside White women (86.4 per 100,000), surpassing Black women (81.5 per 100,000). In contrast, the overall breast cancer death rate continuously declined during 1989-2022 by 44% overall, translating to 517,900 fewer breast cancer deaths during this time. However, not all women have experienced this progress; mortality remained unchanged since 1990 in American Indian/Alaska Native women, and Black women have 38% higher mortality than White women despite 5% lower incidence. Although the Black-White disparity partly reflects more triple-negative cancers, Black women have the lowest survival for every breast cancer subtype and stage except localized disease, with which they are 10% less likely to be diagnosed than White women (58% vs. 68%), highlighting disadvantages in social determinants of health. Progress against breast cancer could be accelerated by mitigating racial, ethnic, and social disparities through improved clinical trial representation and access to high-quality screening and treatment.

Keywords

Author Keywords

[breast neoplasms](#)[breast cancer](#)[epidemiology](#)[health disparities](#)[incidence](#)[mortality](#)[molecular subtype](#)

Keywords Plus

[HISPANIC WOMEN](#)[UNITED-STATES](#)[RISK](#)-

[FACTORS](#)[DISPARITIES](#)[ASSOCIATION](#)[CALIFORNIA](#)[MORTALITY](#)[CARCINOMA](#)[ANCESTRY](#)[SURVIVAL](#)

3-Lung cancer statistics, 2023

By Kratzer, TB (Kratzer, Tyler B.) [1] , [4] ; Bandi, P (Bandi, Priti) [1] ; Freedman, ND (Freedman, Neal D.) [2] ; Smith, RA (Smith, Robert A.) [1] ; Travis, WD (Travis, William D.) [3] ; Jemal, A (Jemal, Ahmedin) [1] ; Siegel, RL (Siegel, Rebecca L.) [1] (provided by Clarivate) Source CANCER Volume 130 Issue 8 Page 1330-1348 DOI 10.1002/cncr.35128 Published APR 15 2024 Early Access JAN 2024 Indexed 2024-03-04 Document Type Review

Abstract

Despite decades of declining mortality rates, lung cancer remains the leading cause of cancer death in the United States. This article examines lung cancer incidence, stage at diagnosis, survival, and mortality using population-based data from the National Cancer Institute, the Centers for Disease Control and Prevention, and the North American Association of Central Cancer Registries. Over the past 5 years, declines in lung cancer mortality became considerably greater than declines in incidence among men (5.0% vs. 2.6% annually) and women (4.3% vs. 1.1% annually), reflecting absolute gains in 2-year relative survival of 1.4% annually. Improved outcomes likely reflect advances in treatment, increased access to care through the Patient Protection and Affordable Care Act, and earlier stage diagnosis; for example, compared with a 4.6% annual decrease for distant-stage disease incidence during 2013-2019, the rate for localized-stage disease rose by 3.6% annually. Localized disease incidence increased more steeply in states with the highest lung cancer screening prevalence (by 3%-5% annually) than in those with the lowest (by 1%-2% annually). Despite progress, disparities remain. For example, Native Americans have the highest incidence and the slowest decline (less than 1% annually among men and stagnant rates among women) of any group. In addition, mortality rates in Mississippi and Kentucky are two to three times higher than in most western states, largely because of elevated historic smoking prevalence that remains. Racial and geographic inequalities highlight longstanding opportunities for more concerted tobacco-control efforts targeted at high-risk populations, including improved access to smoking-cessation treatments and lung cancer screening, as well as state-of-the-art treatment.

Keywords

Author Keywords

[cancer screening](#)[cancer statistics](#)[cancer surveillance](#)[lung cancer](#)[stage at diagnosis](#)[survival](#)

Keywords Plus

[HEALTH-CARE ACCESS](#)[UNITED STATES](#)[ARSENIC CONCENTRATION](#)[CIGARETTE-SMOKING](#)[DRINKING-WATER](#)[PLEURAL MESOTHELIOMA](#)[POOLED ANALYSIS](#)[BLADDER-CANCER](#)[ALASKA NATIVES](#)[RISK-FACTORS](#)

Statistics

4- CoverM: read alignment statistics for metagenomics

By Aroney, STN (Aroney, Samuel T. N.) [1] ; Newell, RJP (Newell, Rhys J. P.) [1] ; Nissen, JN (Nissen, Jakob N.) [2] ; Camargo, AP (Camargo, Antonio Pedro) [3] , [4] ; Tyson, GW (Tyson, Gene W.) [1] ; Woodcroft, B (Woodcroft, Ben J.) [1] (provided by Clarivate) Source BIOINFORMATICS Volume 41 Issue 4 DOI 10.1093/bioinformatics/btaf147 Article Number btaf147 Published APR 2025 Indexed 2025-04-23 Document Type Article

Abstract

Genome-centric analysis of metagenomic samples is a powerful method for understanding the function of microbial communities. Calculating read coverage is a central part of analysis, enabling differential coverage binning for recovery of genomes and estimation of microbial community composition. Coverage is determined by processing read alignments to reference sequences of either contigs or genomes. Per-reference coverage is typically calculated in an ad-hoc manner, with each software package providing its own implementation and specific definition of coverage. Here we present a unified software package CoverM which calculates several coverage statistics for contigs and genomes in an ergonomic and flexible manner. It uses "Mosdepth arrays" for computational efficiency and avoids unnecessary I/O overhead by calculating coverage statistics from streamed read alignment results.

5-Cancer treatment and survivorship statistics, 2025

By Wagle, NS (Wagle, Nikita Sandeep) [1] ; Nogueira, L (Nogueira, Leticia) [2] ; Devasia, TP (Devasia, Theresa P.) [3] ; Mariotto, AB (Mariotto, Angela B.) [3] ; Yabroff, KR (Yabroff, K. Robin) [2] ; Islami, F (Islami, Farhad) [4] ; Jemal, A (Jemal, Ahmedin) [5] ; Alteri, R (Alteri, Rick) [6] ; Ganz, PA (Ganz, Patricia A.) [7] , [8] ; Siegel, RL (Siegel, Rebecca L.) [1] (provided by Clarivate) Source CA-A CANCER JOURNAL FOR CLINICIANS Volume 75 Issue 4 Page 308-340 DOI 10.3322/caac.70011 Published AUG 2025 Early Access MAY 2025 Indexed 2025-06-06 Document Type Article

Abstract

The number of people living with a history of cancer in the United States continues to rise because of the growth and aging of the population as well as improved survival through advances in early detection and treatment. To assist the public health community serve the needs of these survivors, the American Cancer Society and the National Cancer Institute collaborate triennially to estimate cancer prevalence in the United States using data from the Surveillance, Epidemiology, and End Results cancer registries, the Centers for Disease Control and Prevention's National Center for Health Statistics, and the United States Census Bureau. In addition, cancer treatment patterns are presented from the National Cancer Database along with a brief overview of treatment-related side effects. As of January 1, 2025, about 18.6 million people were living in the United States with a history of cancer, and this number is projected to exceed 22 million by 2035. The three most prevalent cancers are prostate (3,552,460), melanoma of the skin (816,580), and colorectum (729,550) among males and breast (4,305,570), uterine corpus (945,540), and thyroid (859,890) among females. About one half (51%) of survivors were diagnosed within the past 10 years, and nearly four fifths (79%) were aged 60 years and older. Racial differences in treatment in 2021 were common across disease stage; for example, Black people with stage I-II lung cancer were less likely to undergo surgery than their White counterparts (47% vs. 52%). Larger disparities exist for rectal cancer, for which 39% of Black people with stage I disease undergo proctectomy or proctocolectomy compared to 64% of their White counterparts. Targeted, multi-level efforts to expand access to high-quality care and survivorship resources are vital to reducing disparities and advancing support for all survivors of cancer.

Keywords

Author Keywords

[prevalence](#)[statistics](#)[survivorship](#)[treatment patterns](#)

Keywords Plus

[CONTRALATERAL PROPHYLACTIC MASTECTOMY](#)[THYROID ASSOCIATION](#)[GUIDELINES](#)[QUALITY-OF-LIFE](#)[CLINICAL-PRACTICE](#)[GUIDELINES](#)[RENAL-CELL CARCINOMA](#)[BREAST-CANCER](#)[CHILDHOOD-CANCER](#)[LUNG-CANCER](#)[BLADDER-CANCER](#)[RADICAL CYSTECTOMY](#)

6-European Society of Cardiology: the 2023 Atlas of Cardiovascular Disease Statistics

By Timmis, A (Timmis, Adam) [1] ; Aboyans, V (Aboyans, Victor) [2] ; Vardas, P (Vardas, Panos) [3] , [4] , [5] ; Townsend, N (Townsend, Nick) [6] ; Torbica, A (Torbica, Aleksandra) [7] ; Kavousi, M (Kavousi, Maryam) [8] ; Borian, G (Boriani, Giuseppe) [9] ; Huculeci, R (Huculeci, Radu) [5] ; Kazakiewicz, D (Kazakiewicz, Denis) [5] ; Scherr, D (Scherr, Daniel) [10] ; (provided by clarivate) Source EUROPEAN HEART JOURNAL Volume 45 Issue 38 Page 4019-4062 DOI 10.1093/eurheartj/ehae466 Published OCT 7 2024 Indexed 2025-01-19 Document Type Article

Abstract

This report from the European Society of Cardiology (ESC) Atlas Project updates and expands upon the 2021 report in presenting cardiovascular disease (CVD) statistics for the ESC member countries. This paper examines inequalities in cardiovascular healthcare and outcomes in ESC member countries utilizing mortality and risk factor data from the World Health Organization and the Global Burden of Disease study with additional economic data from the World Bank. Cardiovascular healthcare data were collected by questionnaire circulated to the national cardiac societies of ESC member countries. Statistics pertaining to 2022, or latest available year, are presented. New material in this report includes contemporary estimates of the economic burden of CVD and mortality statistics for a range of CVD phenotypes. CVD accounts for 11% of the EU's total healthcare expenditure. It remains the most common cause of death in ESC member countries with over 3 million deaths per year. Proportionately more deaths from CVD occur in middle-income compared with high-income countries in both females (53% vs. 34%) and males (46% vs. 30%). Between 1990 and 2021, median age-standardized mortality rates (ASMRs) for CVD decreased by median >50% in high-income ESC member countries but in middle-income countries the median decrease was <12%. These inequalities between middle- and high-income ESC member countries likely reflect heterogeneous exposures to a range of environmental, socioeconomic, and clinical risk factors. The 2023 survey suggests that treatment factors may also contribute with middle-income countries reporting lower rates per million of percutaneous coronary intervention (1355 vs. 2330), transcatheter aortic valve implantation (4.0 vs. 153.4) and pacemaker implantation (147.0 vs. 831.9) compared with high-income countries. The ESC Atlas 2023 report shows continuing inequalities in the epidemiology and management of CVD between middle-income and high-income ESC member countries. These inequalities are exemplified by the changes in CVD ASMRs during the last 30 years. In the high-income ESC member countries, ASMRs have been in steep decline during this period but in the middle-income countries declines have been very small. There is now an important need for targeted action to reduce the burden of CVD, particularly in those countries where the burden is greatest.

Keywords

Author Keywords

Cardiovascular diseaseStatisticsEuropean Society of CardiologyHealth infrastructureService provisionRisk factorsMortality

Statistics

Keywords Plus

PERCUTANEOUS CORONARY INTERVENTIONHOSPITALCARDIAC-ARRESTISCHEMIC-HEART-DISEASEPAROXYSMAL ATRIAL-FIBRILLATIONARTERY-BYPASS SURGERYMITRAL-VALVE REPAIRQUALITY-OF-LIFECOST-EFFECTIVENESSMYOCARDIAL-INFARCTIONRISK-FACTORS

Statistics

7-DESI 2024: reconstructing dark energy using crossing statistics with DESI DR1 BAO data

By Calderon, R (Calderon, R.) [1] ; Lodha, K (Lodha, K.) [1] , [2] ; Shafieloo, A (Shafieloo, A.) [1] , [2] ; Linder, E (Linder, E.) [3] , [4] , [5] ; Sohn, W (Sohn, W.) [1] ; de Mattia, A (de Mattia, A.) [6] ; Cervantes-Cota, JL (Cervantes-Cota, J. L.) [7] ; Crittenden, R (Crittenden, R.) [8] ; Davis, TM (Davis, T. M.) [9] ; Ishak, M (Ishak, M.) [10] ; (provided by Clarivate) Source JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS Issue 10 DOI 10.1088/1475-7516/2024/10/048 Article Number 048 Published OCT 2024 Indexed 2024-11-08 Document Type Article

Abstract

We implement Crossing Statistics to reconstruct in a model-agnostic manner the expansion history of the universe and properties of dark energy, using DESI Data hint towards an evolving and emergent dark energy behaviour, with negligible presence of dark energy at z greater than or similar to 1, at varying significance depending on data sets combined. In all these reconstructions, the cosmological constant lies outside the 95% confidence intervals for some redshift ranges. This dark energy behaviour, reconstructed using Crossing Statistics, is in agreement with results from the conventional w_0-w_a dark energy equation of state parametrization reported in the DESI Key cosmology paper. Our results add an extensive class of model-agnostic reconstructions with acceptable fits to the data, including models where cosmic acceleration slows down at low redshifts. We also report constraints on H_0 from our model-agnostic analysis, independent of the pre-recombination physics.

Keywords

Author Keywords

[baryon acoustic oscillations](#)[cosmological parameters from LSS](#)[dark energy experiments](#)[dark energy theory](#)

Keywords Plus

[COSMOLOGICAL CONSTANT](#)[EXPANSION HISTORY](#)[UNIVERSE](#)[LAMBDA](#)

8- Comparative analysis of cancer statistics in China and the United States in 2024

By Wu, YJ (Wu, Yujie) [1] ; He, SY (He, Siyi) [1] ; Cao, MD (Cao, Mengdi) [1] ; Teng, Y (Teng, Yi) [1] ; Li, QR (Li, Qianru) [1] ; Tan, NP (Tan, Nuopei) [1] ; Wang, JC (Wang, Jiachen) [1] ; Zuo, TT (Zuo, Tingting) [1] ; Li, TY (Li, Tianyi) [1] ; Zheng, YJ (Zheng, Yuanjie) [1] ; (provided by Clarivate) Source CHINESE MEDICAL JOURNAL Volume 137 Issue 24 Page 3093-3100 DOI 10.1097/CM9.0000000000003442 Published DEC 20 2024 Indexed 2025-02-01 Document Type Article

Abstract

Background: Cancer patterns in China are becoming similar to those in the United States (US). Comparing the recent cancer profiles, trends, and determinants in China and the US can provide useful reference data. **Methods:** This study used open-source data. We used GLOBOCAN 2022 cancer estimates and United Nations population estimates to calculate cancer cases and deaths in both countries during 2024. Data on cancer incidence and mortality trends were obtained from the Surveillance, Epidemiology, and End Results (SEER) program and National Centre for Health Statistics in the US and cancer registry reports of the National Cancer Center (NCC) of China. Data from the Global Burden of Disease study (GBD) and a decomposition approach were used to estimate the contributions of four determinants to the change in cancer deaths. **Results:** In 2024, there are an estimated 3,246,625 and 2,510,597 new cancer cases and 1,699,066 and 640,038 cancer deaths in China and the US, respectively. The highest estimated cancer cases are lung cancer in China and breast cancer in the US. The age-standardized incidence rates of lung and colorectal cancer in the US, and stomach, liver, and esophageal cancer in China have decreased, but the incidence rates of liver cancer in the US and colorectal cancer, prostate cancer in men, and cervical cancer in women in China have increased. Increases in the adult population size and population aging are main reasons for the increase in cancer deaths; case fatality rates are a main reason for the decrease in cancer deaths in both countries. **Conclusions:** China has made progress in cancer control but lags the US. Considering the transformation in China's pattern of cancers epidemiology, it is imperative to develop stronger policies by adopting the cancer prevention and control strategies used in the US to address population aging and curb growing cancer trends.

Keywords

Author Keywords

[Cancer](#) [Incidence](#) [Mortality](#) [Aging](#) [China](#) [United States](#) [Lung cancer](#) [Breast cancer](#) [Esophageal cancer](#) [Stomach cancer](#) [Liver cancer](#)

Keywords Plus

[TOBACCO SMOKING](#)

Statistics

9-Heart Failure Epidemiology and Outcomes Statistics: A Report of the Heart Failure Society of America

By Bozkurt, B (Bozkurt, Biykem) [1] ; Ahmad, T (Ahmad, Tariq) [2] ; Alexander, KM (Alexander, Kevin M.) [3] ; Baker, WL (Baker, William L.) [4] ; Bosak, K (Bosak, Kelly) [5] ; Breathett, K (Breathett, Khadijah) [6] ; Fonarow, GC (Fonarow, Gregg C.) [7] ; Heidenreich, P (Heidenreich, Paul) [3] ; Ho, JE (Ho, Jennifer E.) [8] ; Hsich, E (Hsich, Eileen) [9] ; (provided by Clarivate) Source JOURNAL OF CARDIAC FAILURE Volume 29 Issue 10 Page 1412-1451 DOI 10.1016/j.cardfail.2023.07.006 Published OCT 2023 Early Access OCT 2023 Indexed 2023-12-07 Document Type Article

Keywords

Author Keywords

Heart failure epidemiology prevalence incidence mortality outcomes

Keywords Plus

AGE-SPECIFIC TRENDS IN ATHEROSCLEROSIS RISK, TEMPORAL TRENDS, UNITED STATES LIFETIME RISK, POPULATION MORTALITY, PREVALENCE, DISPARITIES, HOSPITALIZATIONS

10-Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

By Bray, F (Bray, Freddie) [1], [3] ; Laversanne, M (Laversanne, Mathieu) [1] ; Sung, HYA (Sung, Hyuna) [2] ; Ferlay, J (Ferlay, Jacques) [1] ; Siegel, RL (Siegel, Rebecca L.) [2] ; Soerjomataram, I (Soerjomataram, Isabelle) [1] ; Jemal, A (Jemal, Ahmedin) [2] (provided by Clarivate) Source CA-A CANCER JOURNAL FOR CLINICIANS Volume 74 Issue 3 Page 229-263 DOI 10.3322/caac.21834

Published MAY 2024 Early Access APR 2024 Indexed 2024-04-04 Document Type Article

Abstract

This article presents global cancer statistics by world region for the year 2022 based on updated estimates from the International Agency for Research on Cancer (IARC). There were close to 20 million new cases of cancer in the year 2022 (including nonmelanoma skin cancers [NMSCs]) alongside 9.7 million deaths from cancer (including NMSC). The estimates suggest that approximately one in five men or women develop cancer in a lifetime, whereas around one in nine men and one in 12 women die from it. Lung cancer was the most frequently diagnosed cancer in 2022, responsible for almost 2.5 million new cases, or one in eight cancers worldwide (12.4% of all cancers globally), followed by cancers of the female breast (11.6%), colorectum (9.6%), prostate (7.3%), and stomach (4.9%). Lung cancer was also the leading cause of cancer death, with an estimated 1.8 million deaths (18.7%), followed by colorectal (9.3%), liver (7.8%), female breast (6.9%), and stomach (6.8%) cancers. Breast cancer and lung cancer were the most frequent cancers in women and men, respectively (both cases and deaths). Incidence rates (including NMSC) varied from four-fold to five-fold across world regions, from over 500 in Australia/New Zealand (507.9 per 100,000) to under 100 in Western Africa (97.1 per 100,000) among men, and from over 400 in Australia/New Zealand (410.5 per 100,000) to close to 100 in South-Central Asia (103.3 per 100,000) among women. The authors examine the geographic variability across 20 world regions for the 10 leading cancer types, discussing recent trends, the underlying determinants, and the prospects for global cancer prevention and control. With demographics-based predictions indicating that the number of new cases of cancer will reach 35 million by 2050, investments in prevention, including the targeting of key risk factors for cancer (including smoking, overweight and obesity, and infection), could avert millions of future cancer diagnoses and save many lives worldwide, bringing huge economic as well as societal dividends to countries over the forthcoming decades.

Keywords

Author Keywords

[cancer](#) [burden](#) [cancer](#) [control](#) [epidemiology](#) [incidence](#) [mortality](#)

Keywords Plus

[ONSET](#) [COLORECTAL](#)-[CANCER](#) [THYROID](#)-[CANCER](#) [LUNG](#)-[CANCER](#) [UNITED](#) [STATE](#) [TASK](#) [FORCE](#) [INCIDENCE](#)
[TRENDS](#) [INCIDENCE](#) [RATES](#) [ESOPHAGEAL](#) [CANCER](#) [GASTRIC](#)-[CANCER](#) [AIR](#)-[POLLUTION](#)

Statistics

11-2025 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association

By Martin, SS (Martin, Seth S.) [1] ; Aday, AW (Aday, Aaron W.) [3] ; Allen, NB (Allen, Norrina B.) [4] ; Almarzooq, ZI (Almarzooq, Zaid I.) [5] ; Anderson, CAM (Anderson, Cheryl A. M.) [6] ; Arora, P (Arora, Pankaj) [7] ; Avery, CL (Avery, Christy L.) [8] ; Baker-Smith, CM (Baker-Smith, Carissa M.) [9] ; Bansal, N (Bansal, Nisha) [10] ; Beaton, AZ (Beaton, Andrea Z.) [11] ; Group Authors

Amer Heart Assoc Council (Amer Heart Assoc Council) ; Prevention Stat Comm (Prevention Stat Comm) ; Stroke Stat Comm (Stroke Stat Comm) (provided by Clarivate) Source CIRCULATION Volume 151 Issue 8 Page e41-e660 DOI 10.1161/CIR.0000000000001303 Published FEB 25 2025

Indexed 2025-03-09 Document Type Review

Abstract

BACKGROUND: The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). **METHODS:** The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2025 AHA Statistical Update is the product of a full year's worth of effort in 2024 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. This year's edition includes a continued focus on health equity across several key domains and enhanced global data that reflect improved methods and incorporation of approximately 3000 new data sources since last year's Statistical Update. **RESULTS:** Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. **CONCLUSIONS:** The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.

Keywords

Author Keywords

[AHA Scientific Statements](#)[cardiovascular diseases](#)[epidemiology](#)[risk factors](#)[statistics](#)[stroke](#)

Statistics

12-2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association

By Martin, SS (Martin, Seth S.) [1] ; Aday, AW (Aday, Aaron W.) [3] ; Almarzooq, ZI (Almarzooq, Zaid I.) [4] ; Anderson, CAM (Anderson, Cheryl A. M.) [5] ; Arora, P (Arora, Pankaj) [6] ; Avery, CL (Avery, Christy L.) [7] ; Baker-Smith, CM (Baker-Smith, Carissa M.) [8] ; Gibbs, BB (Gibbs, Bethany Barone) [9] ; Beaton, AZ (Beaton, Andrea Z.) [10] ; Boehme, AK (Boehme, Amelia K.) [11] ; Group Author Amer Heart Assoc Council Epidemiol Prevent Stat Comm Stroke Stat Subcomm (Amer Heart Assoc Council Epidemiol Prevent Stat Comm Stroke Stat Subcomm) (provided by Clarivate) Source CIRCULATION Volume 149 Issue 8 Page E347-E913 DOI 10.1161/CIR.0000000000001209 Published FEB 20 2024 Indexed 2024-10-26 Document Type Article

Abstract

BACKGROUND: The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs).

METHODS: The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2024 AHA Statistical Update is the product of a full year's worth of effort in 2023 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. The AHA strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional global data, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains.

RESULTS: Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics.

CONCLUSIONS: The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.

Statistics

Keywords

Author Keywords

[AHA Scientific Statements](#)[cardiovascular diseases](#)[epidemiology](#)[risk factors](#)[statistics](#)[stroke](#)

Keywords Plus

[GENOME-WIDE ASSOCIATION](#)[HOSPITAL](#)[CARDIAC-ARREST](#)[IDEAL CARDIOVASCULAR HEALTH](#)[PERIPHERAL ARTERY-DISEASE](#)[BODY-MASS INDEX](#)[ABDOMINAL AORTIC-ANEURYSM](#)[SMALL-CAUSE MORTALITY](#)[ONSET](#)
[ATRIAL-FIBRILLATION](#)[CHRONIC KIDNEY-DISEASE](#)[HIGH-SCHOOL-STUDENTS](#)

Statistics

13-HF STATS 2024: Heart Failure Epidemiology and Outcomes Statistics An Updated 2024 Report from the Heart Failure Society of America

By Bozkurt, B (Bozkurt, Biykem) [1] ; Writing Comm (Writing Comm, Tariq) ; Ahmad, T (Ahmad, Tariq) [2] ; Alexander, K (Alexander, Kevin) [2] ; Baker, WL (Baker, William L.) [3] ; Bosak, K (Bosak, Kelly) [4] ; Breathett, K (Breathett, Khadijah) [5] ; Carter, S (Carter, Spencer) [6] ; Drazner, MH (Drazner, Mark H.) [7] ; Dunlay, SM (Dunlay, Shannon M.) [8] ; (provided by Clarivate) Source JOURNAL OF CARDIAC FAILURE Volume 31 Issue 1 Page 66-116 DOI 10.1016/j.cardfail.2024.07.001 Published JAN 2025 Early Access JAN 2025 Indexed 2025-02-24 Document Type Article

Keywords

Author Keywords

Heart

FailureEpidemiologyPrevalenceIncidenceMortalityOutcomesHospitalizationsStatisticsAgeRaceEthnicitySexGender

Keywords Plus

REDUCED EJECTION FRACTIONAGE-SPECIFIC TRENDSATHEROSCLEROSIS RISKTEMPORAL TRENDSUNITED-STATESSCIENTIFIC STATEMENTSSOCIAL DETERMINANTSMORTALITYPOPULATIONPREVALENCE

14-A spatial autocorrelation analysis of road traffic crash by severity using Moran's I spatial statistics: A comparative study of Addis Ababa and Berlin cities

By Gedamu, WT (Gedamu, Wondwossen Tadesse) [1] , [2] ; Plank-Wiedenbeck, U (Plank-Wiedenbeck, Uwe) [1] ; Wodajo, BT (Wodajo, Bikila Teklu) [2] Source ACCIDENT ANALYSIS AND PREVENTION Volume 200 DOI 10.1016/j.aap.2024.107535 Article Number 107535 Published JUN 2024 Early Access MAR 2024 Indexed 2024-05-10 Document Type Article

Abstract

Methodological advancements in road safety research reveal an increasing inclination toward integrating spatial approaches in hot spot identification, spatial pattern analysis, and developing spatially lagged models. Previous studies on hot spot identification and spatial pattern analysis have overlooked crash severities and the spatial autocorrelation of crashes by severity, missing valuable insights into crash patterns and underlying factors. This study investigates the spatial autocorrelation of crash severity by taking two capital cities, Addis Ababa and Berlin, as a case study and compares patterns in low and high-income countries. The study used three-year crash data from each city. It employed the average nearest neighbor distance (ANND) method to determine the significance of spatial clustering of crash data by severity, Global Moran's I to examine the statistical significance of spatial autocorrelation, and Local Moran's I to identify significant cluster locations with High-High (HH) and Low-Low (LL) crash severity values. The ANND analysis reveals a significant clustering of crashes by severity in both cities, except in Berlin's fatal crashes. However, different Global Moran's I result were obtained for the two cities, with a strong and statistically significant value for Addis Ababa compared to Berlin. The Local Moran's I result indicates that the central business district and residential areas have LL values, while the city's outskirts exhibit HH values in Addis Ababa. With some persistent HH value locations, Berlin's HH and LL grid clusters are intermingled on the city's periphery. Socio-economic factors, road user behavior and roadway factors contribute to the difference in the result. Nevertheless, it is interesting to note the similarity of significant HH value locations on the outskirts of both cities. Finally, the results are consistent with previous studies and indicate the need for further investigation in other locations.

Keywords

Author Keywords

[Spatial autocorrelation](#)[Crash severity](#)[Spatial analysis](#)[Hot spots](#)[Spatial pattern](#)[Moran's I](#)

Keywords Plus

[KERNEL DENSITY-ESTIMATION](#)[BICYCLIST INJURY](#)

[SEVERITY](#)[SAFETY](#)[IDENTIFICATION](#)[REGRESSION](#)[RISK](#)[FREQUENCY](#)[LEVEL](#)[HETEROGENEITY](#)[PERFORMANCE](#)